Flyttande medelvärde Den rörliga genomsnittliga tekniska indikatorn visar genomsnittligt instrumentprisvärde under en viss tidsperiod. När man beräknar glidande medelvärde, genomsnittar man instrumentpriset för denna tidsperiod. När priset ändras ökar eller glider det rörliga genomsnittet. Det finns fyra olika typer av glidande medelvärden: Enkel (även kallad aritmetisk), Exponentiell. Smoothed och Weighted. Flyttande medelvärde kan beräknas för varje sekventiell dataset, inklusive öppnings - och slutkurser, högsta och lägsta priser, handelsvolym eller andra indikatorer. Det är ofta fallet när dubbla rörliga medelvärden används. Det enda där glidande medelvärden av olika typer skiljer sig avsevärt från varandra är när viktkoefficienter, som tilldelas de senaste uppgifterna, skiljer sig åt. Om vi pratar om Simple Moving Average. Samtliga priser för den aktuella tidsperioden är lika med värdet. Exponentiell rörlig medelvärde och linjärt vägt rörande medelvärde bifogar mer värde till de senaste priserna. Det vanligaste sättet att tolka prisglidande genomsnittet är att jämföra sin dynamik med prisåtgärden. När instrumentpriset stiger över sitt glidande medelvärde visas en köpsignal, om priset sjunker under sitt glidande medelvärde, så har vi en säljsignal. Detta handelssystem, som är baserat på det rörliga genomsnittet, är inte utformat för att ge inträde till marknaden rätt i sin lägsta punkt och dess utgång höger på toppen. Det tillåter att handla enligt följande trend: att köpa snart efter att priserna når botten och att sälja snart efter att priserna har nått sin topp. Flyttande medelvärden kan också tillämpas på indikatorer. Det är här tolkningen av indikatorens glidande medelvärden liknar tolkningen av prisförskjutande medelvärden: om indikatorn stiger över dess glidande medelvärde betyder det att den stigande indikatorrörelsen sannolikt kommer att fortsätta: om indikatorn faller under dess glidande medelvärde Innebär att det sannolikt fortsätter att gå neråt. Här är typerna av glidande medelvärde på diagrammet: SMA (Medium Moving Average (SMA) Exponential Moving Average (EMA) Smoothed Moving Average (SMMA) Linjärt vägt rörligt medelvärde (LWMA) Du kan testa handelssignalerna för denna indikator genom att skapa en expertrådgivare I MQL5 Wizard. Beräkning Enkelt rörligt medelvärde (SMA) Enkelt, med andra ord beräknas aritmetiskt rörligt medelvärde genom att summera priserna på instrumentlåsning under ett visst antal enskilda perioder (t ex 12 timmar). Detta värde divideras därefter med antalet sådana perioder. SMA SUM (CLOSE (i), N) N SUM summa CLOSE (i) aktuell period nära pris N antal beräkningsperioder. Exponentiellt rörligt medelvärde (EMA) Exponentiellt glatt rörligt medelvärde beräknas genom att en viss del av nuvarande slutkurs läggs till föregående värde för glidande medelvärde. Med exponentiellt slätade glidande medelvärden är de senaste snabba priserna mer värdefulla. P-procent exponentiell glidande medelvärde kommer att se ut: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) CLOSE (i) nuvarande period nära pris EMA (i - 1) Av en föregående period P procentsatsen av att använda prisvärdet. Smoothed Moving Average (SMMA) Det första värdet av detta slätade glidande medelvärde beräknas som det enkla glidande medelvärdet (SMA): SUM1 SUM (CLOSE (i), N) Det andra glidande medlet beräknas enligt följande formel: SMMA (i) (SMMA1 (N-1) CLOSE (i)) N Lyckande rörliga medelvärden beräknas enligt följande formel: PREVSUM SMMA (i - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) CLOSE (i)) N SUM summan SUM1 Summan av slutkurserna för N perioder, räknas den från föregående stapel PREVSUM slätad summa av föregående stapel SMMA (i-1) jämnt glidande medelvärde för föregående stapel SMMA (i) glatt glidande medelvärde av nuvarande stapel (Förutom den första) CLOSE (i) nuvarande slutpris N utjämningsperiod. Efter aritmetiska omvandlingar kan formeln förenklas: SMMA (i) (SMMA (i - 1) (N - 1) CLOSE (i)) N Linjärt Vägt Flytande Medelvärde (LWMA) Vid viktat glidande medelvärde är de senaste data Av mer värde än mer tidiga data. Viktat glidande medelvärde beräknas genom att multiplicera var och en av slutkurserna inom den bedömda serien med en viss viktkoefficient: LWMA SUM (CLOSE (i) I, N) SUM (I, N) SUM Summa CLOSE (i) Nuvarande nära pris SUM (I, N) Total summa av viktkoefficienter N utjämningsperiod. Vägt Rörande medelvärden: Grunderna Under åren har tekniker funnit två problem med det enkla glidande medlet. Det första problemet ligger i tidsramen för glidande medelvärdet (MA). De flesta tekniska analytiker tror att prisåtgärder. Det öppnande eller stängande aktiekurset räcker inte för att bero på att förutsäga köp - eller försäljningssignaler för MAs crossover-åtgärden korrekt. För att lösa detta problem, tilldelar analytiker nu mer vikt till de senaste prisuppgifterna med hjälp av det exponentiellt jämnaste glidande genomsnittet (EMA). (Läs mer om att utforska exponentiellt vägda rörliga medelvärdet.) Ett exempel Till exempel, med en 10-dagars MA, skulle en analytiker ta slutkursen för den 10: e dagen och multiplicera detta nummer med 10, den nionde dagen med nio, den åttonde Dag med åtta och så vidare till den första av MA. Så snart summan har bestämts, fördelar analytikern sedan numret genom tillsats av multiplikatorerna. Om du lägger till multiplikatorerna i 10-dagars MA-exemplet är numret 55. Denna indikator är känd som det linjärt vägda glidmedlet. (För relaterad läsning, kolla in Enkla rörliga genomsnittsvärden. Utveckla tendenser.) Många tekniker är fasta troende i det exponentiellt jämnaste glidande genomsnittet (EMA). Denna indikator har förklarats på så många sätt att det både förvirrar studenter och investerare. Kanske kommer den bästa förklaringen från John J. Murphys tekniska analys av finansmarknaderna (publicerad av New York Institute of Finance, 1999). Det exponentiellt jämnaste glidande genomsnittet behandlar båda problemen i samband med det enkla glidande medlet. För det första tilldelas det exponentiellt glatt genomsnittet en större vikt till de senaste data. Därför är det ett viktat glidande medelvärde. Men medan det tilldelar mindre betydelse för tidigare prisuppgifter, ingår det i beräkningen av alla data i instrumentets livstid. Dessutom kan användaren justera viktningen för att ge större eller mindre vikt till det senaste dagspriset, vilket läggs till i procent av värdet för tidigare dagar. Summan av båda procentvärdena lägger till 100. Till exempel kan det sista dagspriset tilldelas en vikt av 10 (.10), som läggs till föregående dagsvikt på 90 (.90). Detta ger den sista dagen 10 av den totala vikten. Detta skulle motsvara ett 20-dagarsmedelvärde genom att ge priset för sista dag ett mindre värde på 5 (.05). Figur 1: Exponentially Slät Flytande Medel Ovanstående diagram visar Nasdaq Composite Index från den första veckan i augusti 2000 till 1 juni 2001. Som du tydligt kan se, EMA, som i detta fall använder slutkursdata över en Nio dagars period, har bestämda säljsignaler den 8 september (märkt med en svart nedåtpil). Detta var den dag då indexet bröt under 4 000-nivån. Den andra svarta pilen visar ett annat ben som teknikerna faktiskt förväntade sig. Nasdaq kunde inte generera tillräckligt med volym och intresse från detaljhandelsinvesterarna för att bryta 3 000 mark. Därefter dyker du ner igen till botten ut vid 1619.58 den 4 april. Upptrenden av 12 april markeras med en pil. Här stängde indexet 1961.46, och tekniker började se att institutionella fondförvaltare började hämta några fynd som Cisco, Microsoft och några av de energirelaterade frågorna. (Läs våra relaterade artiklar: Flytta genomsnittliga kuvert: Raffinera ett populärt handelsverktyg och flytta genomsnittlig studs.) Ett första bud på ett konkursföretag039s tillgångar från en intresserad köpare vald av konkursbolaget. Från en pool av budgivare. Artikel 50 är en förhandlings - och avvecklingsklausul i EU-fördraget som beskriver de åtgärder som ska vidtas för vilket land som helst. Beta är ett mått på volatiliteten, eller systematisk risk, av en säkerhet eller en portfölj i jämförelse med marknaden som helhet. En typ av skatt som tas ut på kapitalvinster som uppkommit av individer och företag. Realisationsvinster är vinsten som en investerare. En beställning att köpa en säkerhet till eller under ett angivet pris. En köpgränsorder tillåter näringsidkare och investerare att specificera. En IRS-regel (Internal Revenue Service Rule) som tillåter utbetalningar från ett IRA-konto i samband med straff. Regeln kräver att Exponential Moving Average - EMA BREAKING DOWN Exponential Moving Average - EMA De 12 och 26-dagars EMA: erna är de mest populära kortsiktiga medelvärdena, och de används för att skapa indikatorer som den rörliga genomsnittliga konvergensdivergensen (MACD) Och den procentuella prisoscillatorn (PPO). I allmänhet används 50- och 200-dagars EMA som signaler för långsiktiga trender. Näringsidkare som använder teknisk analys, finner glidande medelvärden som är mycket användbara och insiktsfulla när de tillämpas korrekt men skapar kaos när de används felaktigt eller misstolkas. Alla glidande medelvärden som vanligen används i teknisk analys är av sin natur släpande indikatorer. Följaktligen bör slutsatserna från att tillämpa ett glidande medelvärde till ett visst marknadsdiagram vara att bekräfta en marknadsrörelse eller att indikera dess styrka. Mycket ofta, då en rörlig genomsnittlig indikatorlinje har förändrats för att återspegla ett betydande drag på marknaden, har den optimala marknaden för marknadsinträde redan passerat. En EMA tjänar till att lindra detta dilemma till viss del. Eftersom EMA-beräkningen lägger större vikt på de senaste uppgifterna, kramar prisåtgärden lite snävare och reagerar därför snabbare. Detta är önskvärt när en EMA används för att härleda en handelsinmatningssignal. Tolkning av EMA Liksom alla glidande medelindikatorer är de mycket bättre lämpade för trending marknader. När marknaden är i en stark och hållbar uptrend. EMA-indikatorlinjen visar också en uptrend och vice versa för en nedåtriktad trend. En vaksam näringsidkare kommer inte bara att uppmärksamma EMA-linjens riktning utan också förhållandet mellan förändringshastigheten från en stapel till en annan. Eftersom prisåtgärden för en stark uppåtgående börjar att platta och vända, kommer EMA: s förändringshastighet från en stapel till nästa att minska till dess att indikatorlinjen plattas och förändringshastigheten är noll. På grund av den försvagande effekten, vid denna punkt, eller till och med några få barer innan, bör prisåtgärden redan ha reverserat. Det följer därför att observera en konsekvent minskning i förändringshastigheten hos EMA kan själv användas som en indikator som ytterligare kan motverka det dilemma som orsakas av den släpande effekten av rörliga medelvärden. Vanliga användningar av EMA-EMA används ofta i kombination med andra indikatorer för att bekräfta betydande marknadsrörelser och att mäta deras giltighet. För näringsidkare som handlar intradag och snabba marknader är EMA mer tillämplig. Ofta använder handlare EMA för att bestämma en handelsförskjutning. Om en EMA på ett dagligt diagram visar en stark uppåtgående trend, kan en intradaghandlarestrategi vara att endast handla från långsidan på en intradagskarta. Ett exponentiellt jämnt glidande medelvärde är ett viktat rörligt medelvärde där viktfaktorerna är S: s befogenheter. Utjämningskonstanten. Ett exponentiellt jämnt glidande medelvärde beräknas över all data som hittills ackumulerats istället för att ha huggas av efter ett antal dagar. För dag d är det exponentiellt jämnaste glidande medlet: Men det här är bara en geometrisk sekvens. Nästa term i en sådan sekvens ges av: A d (1 S) M d SA d -1. Beräkningen fördjupas och förståelsen betjänas om vi ersätter: P 1 S för S i ekvationen för nästa term. Genom att göra lite algebra upptäcker vi: Denna omformulering gör driften av utjämning väldigt intuitiv. Varje dag tar vi det gamla trendenummeret A d -1. Beräkna skillnaden mellan den och dagens mätning M d. Lägg sedan till en procentandel av den skillnaden P till det gamla trendvärdet få den nya. Självklart är ju närmare P till 1 (och därmed närmare S är noll), desto större påverkan har den nya mätningen på trenden. Om P 1 avbryter det gamla trendvärdet A d -1 och det rörliga genomsnittsvärdet spårar data exakt. Till exempel, med utjämningskonstanten S 0.9 använder vi på viktdata, vi beräknar det nya trendvärdet A d från föregående trendvärde A d -1 och dagens vikt M d som: I diskussioner om exponentiellt slätade glidande medelvärden, särskilt deras ekonomiska Applikationer, akta dig för att förvirra utjämningskonstanten S med variantformen P 1 S införd för att förenkla beräkningen och göra effekten av de nya data på det glidande medlet mer uppenbart. P kallas ofta utjämningsprocenten termen 10 utjämning hänför sig till en beräkning där P 101000.1 och därmed S 0.9.
No comments:
Post a Comment